Page 41 - Bac Mate
P. 41

Ministerul Educaţiei și Cercetării Științifice
                                                Centrul Naţional de Evaluare şi Examinare

                                             Examenul de bacalaureat naţional 2016
                                                         Proba E. c)
                                                   Matematică M_mate-info
                                                                                                      Model
                 Filiera teoretică, profilul real, specializarea matematică-informatică
                 Filiera vocaţională, profilul militar, specializarea matematică-informatică
                 •  Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
                 •  Timpul de lucru efectiv este de 3 ore.
                 SUBIECTUL I                                                                                                                           (30 de puncte)

                                                                           2
                                                                              2
                  5p  1. Determinați numărul real  x , știind că numerele 7,  3x și  x +  sunt, în această ordine, termeni
                      consecutivi ai unei progresii aritmetice.
                                                                                                  2
                  5p  2. Determinaţi numărul real  m , știind că parabola asociată funcției  f ℝ  → ℝ,  ( ) x =  x −  2x m+
                                                                                 :
                                                                                          f
                      este tangentă axei  Ox .
                                                                   4x− 9
                                                                 1       x
                  5p  3. Rezolvați în mulţimea numerelor reale ecuaţia     =  32 .
                                                                 2 
                  5p  4. Calculați probabilitatea ca, alegând o submulțime a mulțimii  { 1, 2, 3, 4, 5, 6A =  } , aceasta
                      să aibă cel mult două elemente.
                  5p  5. În  reperul  cartezian  xOy   se  consideră  punctele  ( 1, 0A −  ) ,  (1, 0B  )   și  (1, 4C  ) .  Determinaţi
                      ecuaţia dreptei care trece prin punctul  B  şi este paralelă cu mediana din  A a triunghiului  ABC .
                                                                                        3π
                  5p  6. Calculaţi lungimea razei cercului circumscris triunghiului  ABC  în care  A =   şi  BC =  2 .
                                                                                         4
                 SUBIECTUL al II-lea                                                              (30 de puncte)
                                                  1  x   0 
                                                            
                      1. Se consideră matricea  ( ) x =   0  1  0 , unde  x  este număr real.
                                           A
                                                           
                                                         x 
                                                  0  0  2  
                                       10
                  5p  a) Arătați că  ( A ( )) 1024=  .
                                 det
                                                                              )
                  5p  b) Determinați numerele reale  x , știind că  ( ) ( ) (  2  2 .
                                                                       A x +
                                                                  2x =
                                                          A x ⋅
                                                                A
                                                                )
                  5p  c) Știind că  ( ) n =  A ( ) ( ) ( ) 3A⋅  2 A⋅  ⋅… ⋅  A (2016 , demonstrați că  n este număr natural divizibil cu
                                         1
                                 A
                      2017.
                                                  3
                      2. Se consideră polinomul  f =  X −  5X + , unde  a  este număr real.
                                                         a
                  5p  a) Arătați că  ( ) 0f  =  a .
                                                            3
                                                               3
                                                                   3
                  5p  b) Determinați numărul real  a  pentru care  x +  x +  x =  2016 4a−  , unde  ,x x  și  x  sunt rădăcinile
                                                                                              3
                                                                   3
                                                               2
                                                                                      1
                                                           1
                                                                                         2
                      polinomului  f .
                  5p  c) Demonstrați că polinomul  f  are cel mult o rădăcină în mulțimea numerelor întregi.
                 SUBIECTUL al III-lea                                                             (30 de puncte)
                                                            x  1  2
                                                                    x
                                                     f
                      1. Se consideră funcţia  f ℝ  → ℝ ,  ( ) x =  e −  x − − 1.
                                            :
                                                               2
                                         x
                  5p  a) Arătaţi că  ( ) x = e − − 1,  x∈ℝ .
                                            x
                                   ' f
                                      f '  ( ) x
                  5p  b) Calculați  lim    .
                                 x→+∞  f  ( ) x
                  5p  c) Demonstraţi că  ( 2 3f  ) ( 3 2< f  ) .
                 Probă scrisă la matematică M_mate-info                                                                                                                                           Model
                 Filiera teoretică, profilul real, specializarea matematică-informatică
                 Filiera vocaţională, profilul militar, specializarea matematică-informatică
                                                         Pagina 1 din 2
   36   37   38   39   40   41   42   43   44   45   46